

Maths
Calculation Policy

## Addition:

Key language to be used: sum, total, add, parts and wholes, plus, altogether, 'more than', 'is equal to', 'is the same as'

| Concrete |
| :--- | :--- |
| Combining two parts to make a whole (use |
| other resources too e.g. eggs, shells, teddy bears |
| etc.) |


| $\mathrm{T}+\mathrm{O}$ using Base 10. ( $\mathrm{T}=$ tens $\mathrm{O}=$ ones $)$ <br> Continue to develop understanding of partitioning and place value. | Children to represent the concrete using a particular symbol e.g. rectangles for tens and squares for ones. | Children can partition the number to add. $\begin{array}{r} 40+0= \\ 1+8= \end{array}$ <br> Or Use the Column Method <br> 41 + <br> 8 |
| :---: | :---: | :---: |
| TO + TO using Base 10. Continue to develop understanding of partitioning and place value and use this to support addition. Begin with NO exchange. $36+25$ | This could be done in more than one way. | $\begin{gathered} 36+25= \\ 30+20=50 \\ 6+5=11 \\ 36 \\ +25 \\ \frac{1}{61} \end{gathered}$ |

Use of place value counters to add
HTO + TO, HTO + HTO etc.
Again, start without carrying.


5
9

There are 11 ones so you take 10 ones and they make 1 ten.

Children to represent the counters e.g. like the image below.


If the children are completing a word problem, draw a bar model to represent what it's asking them to do.

| $?$ |  |
| :--- | :--- |
| 243 | 368 |

James has 243 sweets, Ben has 368. How many do they have altogether?

## Formal Method

## HTO

243
338+
1
581

We carry the new ten under the ten's column.

## Fluency Variation, different ways to ask children to solve 21 + 34



## Subtraction

Key language which should be used: take away, less than, the difference, subtract

| Concrete | Pictorial | Abstract |
| :---: | :---: | :---: |
| Physically taking away and removing objects from a whole (use various objects too) rather than just crossing out. $4-3=1$ | Children to draw the concrete resources they are using and crossing out. <br> Use of the Bar Model: | 4-3 = $\square=4-3$ |
| Counting back (using number lines or number tracks) | Children represent what they see pictorially. E.g. 6 <br> $?$ <br> 2 | Children may draw their own number lines |
| Finding the difference (using Numicon or Ten Frames) $14-5=$ <br> ? $\square$ ? | Children to draw the cubes/ other concrete objects which they have used. <br> $x X X X X X X X$ <br> $X X X X X X$ <br> Use of the bar model | Find the difference betwenn 8 and 6. <br> $8-6$ the difference is ? <br> Children to also explore why 9-7 = 8-6 (difference, of each digit, has changed by 1 so the differene is the same) <br> This will help with numbers like 1000-567 You would take 1 away from each to make 999-566. |




Once the chidlren have had practise with the concrete, they should be able to apply it to any subtraction.

234
$-88$
146


1. You can't take 8 from 4 so you have to borrow a ten from the 3 (tens column) and leave 2
$14-8=6$
2. Then you can't to $2-8$ you borrow 100 from the hundreds column.
12-8 = 4
3. Then you look at the 100 s column. 100-0 = 100.

Fluency Variation, different ways to ask children to solve 391-186:

| 391 |  |
| :---: | :---: |
| 186 | $?$ |

## Raj spent $£ 391$, Tim

 spent $£ 186$. How much more did Raj spend?

## 391-186= 205

? $=391-186$
What's the calculation? What's the answer?


Find the difference between 391 and 186. Subtract 186 form 391. What is 186 less than 391 ?


| Partition to multiply (use Numicon, Base 10, Cuisenaire rods, unifix etc.) | Children to represent the concrete manipulatives in a picture. e.g. Base 10 can look like this. <br> 6 lots of $10=60 \quad 15 \times 4=60$ | Children to be encouraged to show the steps they have taken. $\begin{aligned} & 4 \times 15 \\ & 10 \\ & 10 \times 4=40 \\ & 5 \times 4=20 \\ & 40+20=60 \end{aligned}$ <br> A number line can also be used. |
| :---: | :---: | :---: |
| Formal column method with place value counters or base 10 (at the first stage- no exchange) <br> You need to make 23 three times. See how many ones and how many tens. $60+9$ | Children to represent the counters in a pictorial way. | Children record what it is they are doing to show understanding. |



## Division

Key language that should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

| Concrete | Pictorial | Abstract |
| :---: | :---: | :---: |
| 6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates. | This can be done in a bar so all 4 operations have a similar structure. | $6 \quad \bullet \quad 2=3$ |
| Understand division as repeated grouping and subtracting. $6 \div 2=3$ |  | Abstract number line |



Sharing using place value counters.
$42 \div 3=14$

1. Make the 42
2. Exchange the $4^{\text {th }}$ ten and turn into 10 ones.
3. Share the 10 ones into the three groups


Use of the Bus Stop Method using grouping and counters. Key language for grouping 'How many groups of $X$ can we make with $X$ ' This can be done using sharing


They children can be represented pictorially until the children no longer need it.
$48 \div 4=$


How many 4s in 4?

How many 4s in 8?

You can even use counters to show this.

Children think about what they know. They might partition the numbers.
$42 \div 3=14$
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$
$48 \div 4=$
12
$4 \longdiv { 4 8 }$

How many 4s in

How many 4s in 8?

Fluency variation, different ways to ask children to solve $615 \div 5$ :

| Use the Whole Model below. How can you divide 615 by 5 without using the Bust Stop Method. <br> How many 5 s in 500? 100 <br> How many 5 s in 100? 20 <br> How many 5 s in 15 ? 3 <br> Add up $100+20+3=123$ | I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each bank? <br> 615 pupils need to be put into 5 groups. How many will be in each group? | 1. How many 5 s in 6 ? 1 <br> 2. Carry the remaining 100 in front of the 1 ten. <br> 3. How many 5 s in 11 ? 2 <br> 4. Carry the remaining 10 over to the 5 . <br> 5. How many 5 s in 15 ? 3 $\begin{aligned} & 615 \div 5= \\ & \square=615 \div 5 \end{aligned}$ <br> How many 5 s in $615 ?$ | What is the calculation? $615 \div 5=$ <br> How could we solve this? <br> Partition the number <br> 600 and 10 and 5 <br> If there are 12 lots of 5 in 60 there must be 120 lots of 5 in 600 . <br> There are 2 lots of 5 in 10. <br> There is 1 lot of 5 in 5 . <br> If you add up the answers... $120+2+1=123$ |
| :---: | :---: | :---: | :---: |

